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Abstract—Robotic and vehicular autonomy in contested, 
dynamic environments has historically been limited to 
teleoperation and simple programmed behaviors due to the low 
survivability of available AI and machine-learning techniques in 
the face of novel situations. Here we report that recent few-shot 
machine-learning models trained using interactive, human-
centered, vehicular simulations can enable collaborative learning 
that is both adaptive (dynamically recognizing unfamiliar 
environmental conditions) and online (learning at each time step). 
Specifically, we show that our human-machine teaming approach 
enables simulated vehicles to anticipate novel adversities imposed 
in real time, both externally by their terrain and internally by their 
own mechanics, using only images captured by their front-facing 
cameras. We conclude by discussing the implications of our work 
for enhancing the future survivability of human-robot teams in 
large-scale, cluttered, contested environments.  
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I. INTRODUCTION 
Robotic and vehicular autonomy in contested, dynamic 

environments has historically been limited to teleoperation and 
simple programmed behaviors due to the low survivability of 
available AI and machine-learning techniques in the face of 
novel situations [1]. Ideally, robots and vehicles in such 
environments would be capable of Adaptive Online Learning 
(AOL) of environmental dynamics given limited prior 
observations, in that they would both: 

• dynamically recognize unfamiliar environmental 
conditions (i.e., perform adaptive learning); and  

• learn at each time step (i.e., perform online learning). 

From an alternative perspective, the goal of AOL can be framed 
as learning environmental dynamics in a manner that is efficient 
in both: 

• space, via a batch size of 1; and 

• time, via one- or few-shot learning. 

 Here we study the problem of AOL for the application of 
enabling simulated vehicles to anticipate novel adversities 
imposed in real time, both externally by their terrain and 
internally by their own mechanics, using only images captured 
by their front-facing cameras. Specifically, we attempt to predict 

in an adaptive and online manner whether simulated vehicle 
wheels will slip on terrain at high initial speeds during late 
forward acceleration given prior images of terrain observed 
from the vehicle at low initial speeds during early forward 
acceleration. 

 Prior approaches for similar problems have included 
applying support vector machines to vector embeddings 
computed from the average of small image patches represented 
in a sparse basis computed from a set of exemplary images (as 
in, e.g., D4L [2]) and performing nonlinear regression on local 
receptive fields (as in, e.g., [3]). Such sparse dictionary-learning 
approaches to image classification have, however, generally 
been outperformed by more recent deep-learning techniques in 
their ability to encode higher-level features [4]. Unsurprisingly, 
therefore, deep learning has also been applied to the problem of 
predicting terrain friction from front-facing vehicular imagery 
[5], although not yet in an adaptive and online context, to our 
knowledge. 

 Moreover, to achieve the “best of both worlds” between 
nonparametric models that tend to adapt quickly but generalize 
poorly and parametric models like convolutional networks that 
tend to adapt slowly but generalize well [6], it is helpful to 
decompose the AOL problem statement into two generalized 
steps: 

• an “online” step, in which dimensionality reduction of 
observations into an embedded space is performed; and 

• an “adaptive” step, which provides a method for 
comparing new observations to old ones. 

Under previous approaches, both of those steps have been hand-
engineered, resulting in theoretically suboptimal performance 
since it is unlikely that either step is a local optimum. A 
potentially improved technique is the Matching Networks 
approach [6], which we adopt here, under which end-to-end 
differentiable learning is performed across both steps to ensure 
local optimality of the full solution. 

II. THEORY 
Under the Matching Networks model for few-shot learning 

as applied to our problem, the task of predicting terrain 
classifications 𝑦" is posed as an end-to-end learning problem in 
which the embeddings of 𝑘 prior support images 𝑥! and a novel 
image 𝑥" are learned at the same time as a differentiable neural 



attention function 𝑎(𝑥", 𝑥!) applied to the image labels 𝑦!  from 
the support set: 

 𝑦" = ∑ 𝑎(𝑥", 𝑥!)𝑦!"
!#$ , (1) 

where the attention function 𝑎  is defined as a softmax over 
cosine distances 𝑐 between separate neural embeddings 𝑓%(𝑥") 
of the novel image and 𝑔%(𝑥!)  of the support images 
parameterized by 𝜃, 

 𝑎(𝑥", 𝑥!) = 𝑒&'((*+),.(*!)/ ∑ 𝑒&0((*+),.'*"/1"
2#$0 , (2) 

and the training objective is to minimize the error in predicting 
the labels for a batch set 𝐵 conditioned on a support set 𝑆, where 
both sets are sampled from a label set 𝐿: 

 𝜃 = argmax
%
𝐸3~5,6~5:∑ log𝑃%(𝑦|𝑥, 𝑆)(*,7)∈6 ?. (3) 

Since the support set of images and labels can be chosen to 
consist of only one or a few examples, this model can be viewed 
as a few-shot, differentiable analogue to k-nearest-neighbors 
estimation, as well as a form of meta-learning.  

III. EXPERIMENT 

A. Simulation Environment 
To evaluate the performance of our approach, we used the 

Autonomous Navigation Virtual Environment Laboratory 
(ANVEL) version 3.5 environment [7] to simulate a vehicle 
driving through varying terrain conditions. For this initial 
investigation, we simulated a “Generic 4x4” vehicle, with an 
"API Camera" sensor positioned on its front fender facing 
forward and down toward upcoming terrain, as shown in Fig. 1. 
For the environment, we simulated daylight driving conditions. 
For the terrain, we simulated a flat concrete surface covered with 
irregular stripes of ice, as shown in Fig. 2. For driving control, 
we set the vehicle to constant half (50%) throttle, with straight 
(0%) steering and no (0%) braking, and an overall mechanical 
simulation timestep of 10 ms.  

 
Fig. 1. Simulated vehicle with front camera pointing downward, approaching 
a terrain transition. 

In this simulated environment, every 100 ms, we captured both 
a camera image and the mean of the left-front and right-front 
wheel SAE slip ratios [8]. Simulated adversities were imposed 
both externally to the vehicle, via varying terrain materials with 
different appearances and amounts of slipperiness, and 
internally to vehicle, via mechanical interactions and resonances 

between individual vehicle components, including each of its 
four wheels, its suspension system, and its carriage suspension. 

  

Fig. 2. Simulated terrain in ANVEL consisting of irregular ice strips (light 
blue) overlaid on concrete (gray). 

B. Dataset Generation 
We ran the simulation for 18 simulated seconds and 

grouped the captured terrain images into “high-slip” and “low-
slip” classes corresponding to measured slip ratios above and 
below 0.28, respectively. We then partitioned the overall data 
into training (background) and test (evaluation) sets 
corresponding to respective simulation times during and after 
the first 10 s, as shown in Fig. 3, since our initial focus was to 
study adaptation from early-acceleration conditions to late-
acceleration conditions. Future studies may explore other forms 
of adaption, including to novel terrain materials. We then 
rescaled the images from 640´480 to 84´84 pixels and 
converted them to grayscale. 

Manual examination of the collected images suggested the 
importance of learning representations for high-level global 
features, and not simply local patch-based textures. For 
example, see Fig. 4, in which we show two captured images 
from nearly symmetric high-to-low-slip and low-to-high-slip 
transitions, in which the fact that the vehicle has nearly 
completed passage over an ice stripe (ice appears at bottom of 
image instead of top) provides a high-level contextual clue for 
momentum-enhanced slippage that might be missed with a 
local analysis approach. 

 
 

 
Fig. 3. Measured slip ratios over time as simulated vehicle traversed ice 
stripes. The data are divided into an early-acceleration training set (left of red 
vertical line) and late-acceleration test set (right of red vertical line), and further 
subdivided into low-slip (below red horizontal line) and high-slip (above red 
horizontal line) classes. 



 

 
Fig. 4. Examples of images collected by simulated camera in which global 
context is required to distinguish between high-slip (top) conditions at the 
completion of driving over an ice stripe and low-slip (bottom) conditions at the 
completion of driving over a cement stripe. 

C. Training and Model Architecture 
We evaluated multiple values of the number 𝑁train  of 

support samples per class for training, the number 𝑁test	of 
support samples per class for validation, the number 𝑄train of 
query samples per class for training, and  the number 𝑄test of 
query samples per class for validation: 
(𝑁train, 𝑁test, 𝑄train, 𝑄test) ∈ {(1,1,1,1), (2,2,2,2), (4,4,4,4)} . 
For our model architecture, we followed the single-channel 
Omniglot design from [6], with neural encoders 𝑓 = 𝑔 
implemented as a stack of 4 modules, each consisting of a 3´3 
convolution with 64 filters, batch normalization, ReLU 
activations, and 2´2 max pooling with a stride of 2 [9].  

IV. RESULTS 
We observed improved categorical prediction accuracy 

(“high-slip” versus “low-slip” class) of 85% using Matching 
Networks on our dataset compared to the 72.5% reported for 
the D4L technique [2] on its robotically generated IRA dataset 
after a comparable 1,000, one-shot iterations (see Fig. 5). Our 

model’s accuracy improved to more than 97% after 10,000 one-
shot iterations, although some of this performance may be 
attributable to overfitting on a limited dataset. Benchmarking 
categorical-prediction performance against image datasets not 
collected by real or simulated vehicles, such as the popular 
Brodatz texture database [10], is reserved for future 
investigations. 

V.   CONCLUSIONS 
Here we demonstrated the application of few-shot machine 

learning to human-centered vehicular training data that we 
synthesized using a high-fidelity simulation, but which could 
alternatively have been gathered from actual human driving 
experiments. Our approach enabled simulated vehicles to 
predict novel adversities imposed in real time, both externally 
by their terrain and internally by their own mechanics, using 
only images captured by their front-facing cameras. 

We anticipate that, in the near future, humans and robots 
will need to be able to operate as teams in large-scale, cluttered, 
and contested environments. Our results suggest a path to 
improving the survivability of those teams, namely through 
adaptive online learning of the dynamics of those environments 
from the perspective of humans by nearby robots and vehicles, 
whose predictions can then be fed to back to humans in real 
time from improved decision making. 

 

 
Fig. 5. Training curves of our model with various hyperparameter choices. 
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