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Individual cellular automata rules are attractive models for a range of
biological and physical self-assembling systems. While coexpression and
coevolution are common in such systems, ensembles of cellular automata
rules remain poorly understood. Here we report the first known analysis of
the equally weighted ensemble of all elementary cellular automata (ECA)
rules. Ensemble dynamics reveal persistent, localized, non-interacting pat-
terns, rather than homogenization. The patterns are strongly correlated by
velocity and have a quasi-linear dependence on initial conditions. Disper-
sion from a single initial site generates peaks traveling at low-denominator
fractional velocities, some of which are not discernible in individual rules,
suggesting collective excitation. Further analysis of the time-evolved rule
space shows the 256 ECA rules can be represented by only approximately
111 principal components. These results suggest the rather surprising con-
clusion that rich self-assembly is possible without favoring particular local
interactions.

Keywords: Elementary cellular automata, principal component, ensemble,
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1 INTRODUCTION

There has been much recent interest in programmable self-assembly of biologi-
cal and material components [1–3]. Two very general features of self-assembly
are particularly noteworthy for such applications. First, for a collection of n

components, each of which can take one of k states, the total number of possi-
ble (not necessarily local) instantaneous interactions is k(k∧n), since the future
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state of each component can be determined by any subset of the collection
of current component states. In contrast, the total number of configurations
of the collection is only kn, and so it may be concluded that interaction
spaces are generically larger than configuration spaces. Second, self-assembly
often necessitates multiple cooperating or competing interactions as seen, for
example, in genetic coexpression [4] and hydrophobic-hydrophilic protein
folding [5]. It would therefore be interesting if an entire interaction space could
be systematically surveyed to eventually enable rational tuning of multiple
interactions for controlled self-assembly.

Cellular automata are attractive models for such self-assembly pro-
cesses [6]. In particular, the 256 rules of elementary cellular automata
(ECA) [7] are a model class of local interactions whose approximations and
statistical behavior have been studied in detail [8,9]. It has been found that sin-
gle iterations under the elementary cellular automata rule set are approximately
linearized by a surprisingly small number of principal components [9]. How-
ever, single iterations do not capture the rich behaviors of cellular automata
that require feedback between sites [7]. In the present work, in order to bet-
ter understand the co-expressive behaviors of cellular automata rule spaces,
we study for the first time the co-evolution of common initial configurations
under ensembles of entire rule classes. In contrast to single-iteration stud-
ies [9], the ensembles considered in this paper consist of multiple applications
of individual rules, which introduce nonlinearity that has not, to the best of
our knowledge, been studied previously.

Rule ensembles may not have received significant attention previously
because they typically include non-quiescent rules [10] that invert null initial
states. (In this work, periodic boundaries are imposed, in part to avoid bound-
ary artifacts from such non-quiescent rules.) While ensembles can certainly
be approximated by typically large samples of stochastic cellular automata,
stochastic ensembles of small finite state automata have received the most
scrutiny [11]. Finally, an ensemble of ECA can be embedded in a 2256-color
automaton, so perceived complexity may also have discouraged previous
studies.

2 DEFINITION

In this work, we will focus primarily on the mean evolution of entire classes of
transition rules, and in particular the ECAclass. We define the equal weighting
of ECA rules at position x and iteration n as

en,x ≡ 1
256

255∑

k=0

sk
n(x),

where sk
n(x) is the value at position x and iteration n of an elementary cellular

automaton obeying transition rule k (following Wolfram’s notation [7]) that
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acts on a periodic configuration of size L. For simplicity, our early discussion

assumes an initial configuration of 1

L−1︷ ︸︸ ︷
000 · · · 000. However, in later discussion,

other initial configurations and transition rule classes are considered, while
maintaining an equal rule weighting.

3 RESULTS AND DISCUSSION

Consider the evolution of a single site, averaged with equal weighting over all
elementary rules, as shown in Figure 1(a). The evolution is eventually periodic
with period 2, because that is the least common multiple of cycle sizes over
the 4 possible 2-state automata rules. The same periodicity is reflected in the
alternating behavior of backgrounds under non-quiescent rules [7]. Because
the rule set is symmetric in site replacement values, the ensemble takes the
value 1/2 at iteration 1. For subsequent even iterations, the ensemble takes
the value 3/4 because 3 of the 4 possible 2-state automata are stationary after
a single iteration and the remaining automaton is a 2-cycle that returns to its
initial state after two iterations. Uniform-valued initial configurations must
also have this ensemble oscillatory behavior by translational symmetry.

More interesting behavior is observed in the evolution of initial configu-
rations of larger sizes consisting of a single nonzero site. For configuration
sizes L = 2, 4, 8, as shown in Figure 1(b–d), propagation fronts traveling at
the maximum allowed velocities ±c are discernible against a background 2-
cycle. Surprisingly, the propagation fronts reach finite asymptotic amplitudes,
and do not weaken through intersection, despite the fact that few elemen-
tary rules are linear [12]. Moreover, in the evolution of large configurations,
faint fronts traveling at velocities ±c/2 are also visible, as seen in Figure 1(e).
Such narrow peaks do not appear to be present in any of the individual cellular

FIGURE 1
Visualization of evolution of configurations of different sizes. (a–d) Evolutions for time T = 32
of initial configurations with a single nonzero initial site and sizes (a) 1, (b) 2, (c) 4, and (d) 8.
(e) Evolution of 32 adjacent nonzero sites in a configuration of size L = 512 over time T = 256.
Contrast is enhanced to reveal the presence of fronts with speeds 0, ±c/2, ±c. The downwards
direction corresponds to successive iterations.
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automata evolutions from individual sites [12]. These well-defined structures
beg the question of what other collective velocities, if any, are represented
in the dispersion of elementary cellular automata ensembles, which we will
revisit shortly.

But let us first examine the asymptotic behavior of these ensembles, since
they appear not to homogenize, as might be naively expected for the average of
“uncorrelated” discrete evolutions. The fraction or density of sites at iteration
n with value 1, λ(n), is a useful statistical measure of a cellular automaton’s
equilibration [7]. Here, we will define λ(n) as additionally averaging over an
entire rule set. As visible in Figure 1(b–d), for a range of configuration sizes,
λ(n) follows approximately a 2-periodic orbit. The even-iteration value in the
orbit appears to approach 1/3 with increased configuration size, while the odd-
iteration value approaches ∼ 0.531, as can be seen in the large-configuration
limit of Figure 2(a–b). After L/c iterations, the even- and odd-iteration density
attractors both remain within 2% of their respective asymptotic averages. An
odd-iteration attractor close to 1/2 is expected because that is the density in

FIGURE 2
Equilibration of ensemble patterns. (a–b) Evolution of density λ(n) for (a) odd and (b) even n
(L = 512, T = 2048). (c–d) Equilibrium densities at (c) odd and (d) even iterations from initial
configurations with varying density λ(0) (L = 256, T = 256).
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early odd iterations in the limit of large, nearly empty configurations. How-
ever, the origin of these particular limit values is still anomalous. Equilibration
occurs partially after L/(2c) iterations and almost completely after approxi-
mately L/c iterations, consistent with the times required for fronts with speed
c to first cross each other and then traverse the entire configuration. Addi-
tionally, Figure 2(a–b) confirms that the fronts are wave-like and spatially
localized, since the densities do not converge to 1.

By examining the evolution from initial configurations of varying densities,
it is also possible to separate out the asymptotic contribution of the propagation
fronts from the background, as shown in Figure 2(c–d). The asymptotically
linear interference of the propagation fronts is reflected by the quasi-linearity
of both curves. This quasi-linear density dependence is somewhat surprising
given the sensitive, non-linear dependence on initial conditions of many indi-
vidual rules. It should be noted, however, that initial densities λ(0) near 0.0 or
1.0 lead to asymptotic densities λ(T ), λ(T − 1) that diverge from the linear
trend. For example, while λ(T ) → 1/3 as λ(0) → 0+, λ(T ) = 1/4 for
λ(0) = 0.

Now that we have discuss the non-interaction of the fronts, we return to
our analysis of the front velocities, motivated by the visibility of faint ±c/2-
velocity fronts in ensembles. In particular, let us examine the ensemble that
evolves from a single site over time T ' L/c (i.e., after the primary ±c fronts
have crossed many times), according to the correlation measure,

f0;1(v) = 2
T − 1

∑

n even, 0≤n≤T −2;
n odd, 1≤n≤T −1

[()vcn* + 1 − vcn) · en,)vcn*
+ (vcn − )vcn*) · en,)vcn* + 1],

where v is the fractional velocity and en,x is the mean ensemble value at
iteration n and displacement x from the single nonzero initial site. Note that
linear interpolation was used in the above measure to avoid aliasing arti-
facts. The resulting velocity spectra over odd and even iterations are shown
in Figure 3(a–b). Further interference modes with low-denominator fractional
speeds become evident, the most prominent being c/5, 2c/5, 3c/5, and 4c/5
on even and odd iterations and c/3 and 2c/3 on odd iterations. We believe that
the origin of such well-defined collective speeds in the mean ensemble over
the entire ECA rule class is worthy of further investigation.

There is a second natural way to decompose the ECA ensemble besides
by velocity in the equally weighted sum over all rules—namely, by principal
components. In our principal component analysis, the space-time evolutions
of rules are treated as vectors, which undergo an orthogonal linear transfor-
mation to a new coordinate system with the property that the greatest variance
of the vector set is parallel to the first coordinate, the second greatest vari-
ance of the vector set is parallel to the second coordinate, and so on [13].
Principal component analysis can therefore reveal reduced-dimensional rep-
resentations of the ECA rules. In fact, the persistent non-interacting structures
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FIGURE 3
Dispersion spectra as measured by average density radiated outward from a single site at each
velocity over (a) even and (b) odd iterations (L = 256, T = 32768).

in the ensemble mean already suggested the presence of simple linearly inde-
pendent components as a partial basis set. A full principal component set for
the ECA over a finite time and configuration size is shown in Figure 4. In the
principal component analysis of a configuration with L = 16 over time 2L/c,
starting from a single nonzero site, 111 components were found, a surprisingly
small count compared to the number, 256, of ECA rules. A sharp dropoff in
eigenvalue is visible in the 5 most dominant principal components, which
appear geometrically simple and feature the ±c fronts and the even/odd itera-
tion alternating densities. The next 9 components featured additional structure
propagating at speeds of ±c, but still appear simple at large scales. The pres-
ence of at least some geometrically simple principal components in the ECA
may prove useful for attempts at self-assembly based on linearly combining
cellular automata rules.

We now conclude our study of linear ensembles of CA rule classes by
demonstrating that the rich behaviors observed thus far are not limited to the
elementary cellular automata, but are, in fact, quite generic and present in a
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FIGURE 4
Principal component decomposition of the elementary cellular automata rules. The 111 principal
components for the ensemble (L = 16, T = 32) are ordered by decreasing eigenvalue (first
principal component is red), first from left to right, then top to bottom. The hue of each com-
ponent represents the scaled logarithm of that component’s eigenvalue, and the sharp dropoff of
eigenvalues in the first 5 components is visualized as a comparatively rapid transition from red
to green as compared to the finer spectrum of the remaining components.

variety of other rule classes as well. As shown in Figure 5, rich patterning
beyond simple traveling fronts appears to be present whenever, for example,
more than one nearest neighbor affects the outcome of the rules for 2 colors,
but requires only one nearest neighbor for 3 colors. This requirement suggests
that there is a minimum threshold of rule class complexity needed to produce
nontrivial patterning in the ensemble mean that depends on both the number
of colors and the neighborhood size. It should therefore not be surprising that
similar patterning is observed in the 2-dimensional, 5-nearest-neighbor case
as well, as shown in Figure 6.

4 CONCLUSION

We have shown, for the first time, that averages over spaces of iterated cel-
lular automata rules produce rich interference structures rather than simple
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FIGURE 5
Ensembles means of other 1-D rule classes, with various numbers of site colors and neighbor
dependencies. The number of colors per site and the neighbor dependence are indicated above
each ensemble (L = 32, T = 32).

FIGURE 6
Ensemble mean of the first 10 iterations of all 232 2-dimensional, 5-nearest-neighbor rules.

homogenization. A number of questions regarding the origin of the velocity
and density of the structures remain open, and would be interesting to pursue
in future work, since the mean ensemble we consider is such a natural encapsu-
lation of the elementary cellular automata. Regardless, we have demonstrated
with this simple system that rich patterning based on local interactions is possi-
ble without favoring any single interaction, which should be useful knowledge
for future work in self-assembly.
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